Ansible workshop

The easiest way: to:
orchestrate, deploy and manage

http://dag:wiee.rs/attic/ansible-workshop/

NLUUG Spring Conference, Utrecht, NL
Jeroen Hoekx; jeroen@hoekx.be
Dag Wieers, dag@wiee.rs

Booming project A

» Started in February 2012

- Well-defined unigue selling proposition

- Small auditable codebase (back in the day ;-))
* Very high activity

— 700+ unigue contributors In first 2 years

- Has slowed down when maturing
* Divers use-cases / userbase

- large dotcoms, hosting providers, universities,
banks, government agencies, consultants,
startups, Open Source projects

Compelling features

Uses SSH, no agent

- Self-bootstrapping, no installation

- No extraneous PKI, uses existing authentication/authorization
Swiss army knife

— parallel execution, provisioning, application deployment, configuration
management, orchestration, use-as-a-library, reporting tool, ...

Complex orchestration made easy

- Simple management language (YAML-based !)

- “Infrastructure as data” (not as code !)

- Multi-tier management, multi-user

Core written in python

- Modules can be in any language, interfaces using JSSON
Get started in less than 10 minutes

Buzzword compliant

Privilege escalation

- sudo, su, powerbroker, ...
Idempotency

- Not enforced, but advised
Orchestration

— Control “when”, “what”
and “where”

Declarative

- Language limits
complexity

Multi-user
- Power to the people !
Module development

- Any language supported by
target (python, powershell)

Transports

- local, ssh, chroot, jall, Ixc,
winrm, zone, fireball,
accelerate, funcd

Integration

- Design allows integration at
various levels

Easy to get running

 Reguirements:
- python 2.6, paramiko/openssh, PyYAML, jinja2

* Run or install from checkout

- git clone git://github.com/ansible/ansible.git
- cd ./ansible

1. source ./hacking/env-setup
2. make install

 Install distribution package or make your own

3. make deb / make rpm

Setting up demo environment

KVM and Libvirt Virtual Box

e Copy vm-noname.img to local ¢ Copy vm-noname.vmdk to local disk
disk-store (/var/lib/libvirt/images)

* Create a Host-Only network vboxnetO
Create new VM “vm-master” and use it below

- Use “Import existing disk image” but « Create new VM “vm-master”

Browsellocal”to:vim-master.img - As a Linux guest using Red Hat (32bit)

- Use 512MB RAM
- Use “an existing virtual hard drive file”

— As a Linux guest using Red Hat EL6
- Use 1 CPU and 512MB RAM

— Use the “Virtual network ‘default”: (vmdk)
NAT | - Modify the VM to use the created Host-
* Clone this VM as “vm-web Only network vboxnet0

Clone this VM as “vm-web”

Clone this VM again as “vm-db”
Start all VMs

Clone this VM again as “vm-db”
Start all VMs

Everyhody ready ?

* During this session:

- Documentation available from:
docs.ansible.com
- Let us know If you need help

 To proceed, log on to vm-master using SSH
- Username: root / Password: root
- Go Inside ~/workshop/
- Edit the hosts file
- Use the IP addresses from the other VMs

http://docs.ansible.com/

Terminology

Invento Iy — flat file(s), yaml or custom scripts

- Collection of groups, hosts, variables
Modules - scripted in any language, using json

- Offers specific functionality used in tasks
Plugins - python scripts

— action, callback, connection, filter, lookup, ...
Playbooks - yam/ description

- Collection of plays
e Collection of tasks

Plethora of modules...

Action assemble, command, copy, fetch, get_url, ping, raw, Sscript,
shell; slurp, template, uri
Management authorized_keys, cron, file, group, ini_file, lineinfile, Ivoel, meunt,

seboolean, selinux, senvice, supervisoerctl, sysctl, user, virt, zis

Deployment

cloudformation, djange._manage, easy. install; fireball, gem, git,
hg, mongodhb_user, mysgl_db, mysgl_user, nagios, pip,
postgresgl_db, postgresqgl_user, rabbitmg_parameter,
rabbitmg_plugin, rabbitmag_user, rabbitmg_vhost, subyversion

OS specific apt, apt_key, apt_repository, macports, opkg, pacman, pkgin,
svrdpkg, yum

Workflow add_host, async_status, debug, fail, group._by, mail, pause,
wait_for

Inventory ec2_facts, facter, hpilo_facts, netwoerk_facts, ohal, setup,

virt_facts, vsphere_facts

Provisioning

ec2, ec2 vol, hpile__boet, virt_boet, virt_create, vsphere oot

Ansible troubleshooting

Actions: Increase verbosity

-V Display JSON module output

-V Display (real) targets / communication
-VVV Display low-level SSH execution
-VVVV Display SSH verbose communication

Modules: Test individual modules remotely
export ANSIBLE_KEEP_REMOTE_FILES=1

Delays: Use “pstree” on remote ends
watch -nl1 'for pid in $(pgrep sshd); do pstree -al $pid; done'

Freezes: Disable pty's to avoid input prompts (paramiko)
Logic: Add debug actions to print data structures
Templates: Use --check and --diff during development

Ansible tips and tricks

The “action: module” dilemma

- Don't be fooled, YAML tasks are dictionaries (!)
Playbooks are “documented” declarations

- Always name your actions

- Don't describe, but give meaning

Keep playbooks simple and honest

- Use dynamic inventories to state context

- Templates can help to reduce playbook spaghetti

- Push complex logic into custom modules (locality)

- Sometimes custom lookup_plugins and with_* can help
Idem-potency is key ! Modules can help, but...

- Use “creates=" and “removes=" where possible

- Use “changed_when:” and “failed_when:” to influence outcome

Join in on the fun!

Learn more at:
docs.ansible.com

Talk to us on IRC at:

#ansible on Freenode.net
Discuss on the Ansible mailing list at:

groups.google.com/group/ansible-project

Find us on GitHub at:

github.com/ansible/ansible

Thank you for listening !

This workshop is available from:
github.com/ansible-provisioning

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 10
	Slide 15
	Slide 21
	Slide 22
	Slide 25
	Slide 26

